

Web- und App-Programmierung
Basistechnologien &
Herausforderungen

mit Skriptmaterial von Dr.-Ing. T. Springer

Prof. Dr.-Ing. Tenshi Hara tenshi.hara@ba-sachsen.de

AUFBAU DER LEHRVERANSTALTUNG

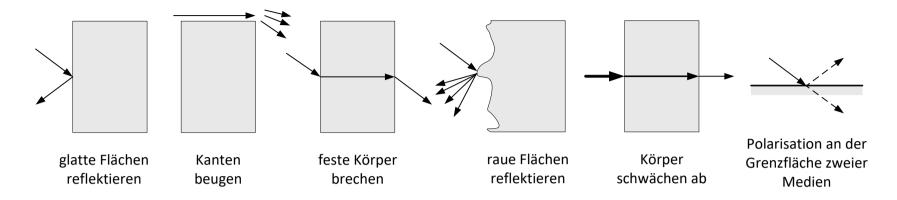
MERKMALE DRAHTLOSER KOMMUNIKATION (1/2)

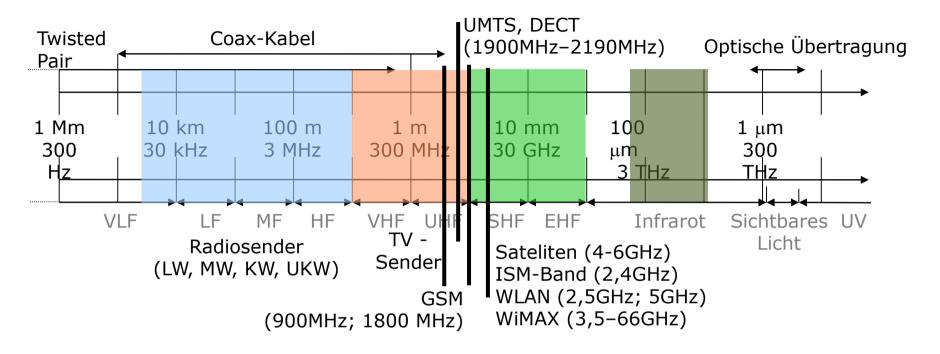
- Anfälligkeit gegenüber Interferenzen
 - keine Kabelschirmung
 - Überlagerungseffekte
 - multiple Ausbreitungstrajektorien und –effekte
- geringere Datenraten aufgrund begrenztem Frequenzspektrums
 - länderspezifische Regulation
 - geteiltes Medium
 - höhere Datenraten nur mit höheren Frequenzen
 - → höherer Energieverbrauch und höhere Fehleranfälligkeit
 - → Brechungs-, Refraktions- und Beugungseffekte

MERKMALE DRAHTLOSER KOMMUNIKATION (2/2)

• hohe Sicherheitsanforderungen wegen gemeinsam genutztem Medium

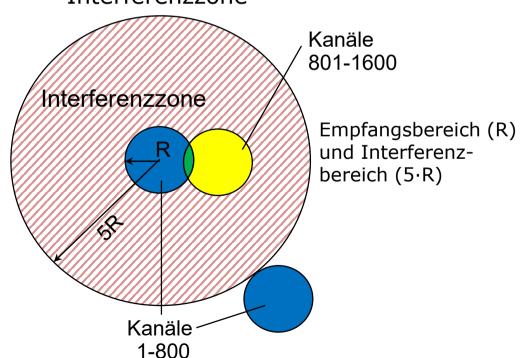
Kommunikationsgeräte


- begrenzte Abdeckung
 - "Sichtverbindung" notwendig
 - Dämpfung, Verformung/Streckung und Replikation des Signals
 - Effekte sind von Frequenz abhängig


EFFEKTE DER SIGNALAUSBREITUNG

- Freiraumdämpfung, Abschattung, Reflexion, Brechung, Streuung, und Beugung sind frequenzabhängig
- Abschattung und Reflexion werden durch Objekte verursacht, die wesentlich größer als die Wellenlänge des Signals sind ("Teilchenverhalten")
- Streuung des Signals an Objekten in der Größenordnung der
 Wellenlänge oder darunter → Aufspalten in schwächere Teilsignale
- je höher Frequenz, desto mehr verhält sich dieses wie Licht
 - Durchdringung von Objekten mit zunehmender Frequenz schlechter
 - Direktwellen, Kommunikation in Sichtlinie

FREQUENZVERTEILUNG


Frequenz und Wellenlänge: $\lambda = \frac{c}{f}$

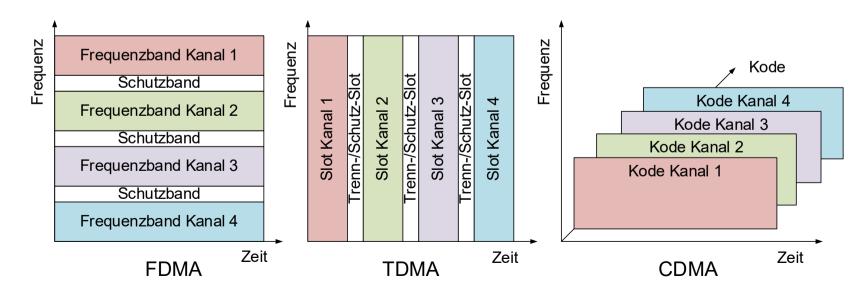

Wellenlänge λ , Lichtgeschwindigkeit $c \cong 3 \times 10^8 \frac{\text{km}}{\text{s}}$, Frequenz f

VLF	Very Low Frequency	UHF	Ultra High Frequency
LF	Low Frequency	SHF	Super High Frequency
MF	Medium Frequency	EHF	Extra High Frequency
HF	High Frequency	UV	Ultraviolet Light
VHF	Very High Frequency	ISM	Industrial, Scientific and Medical

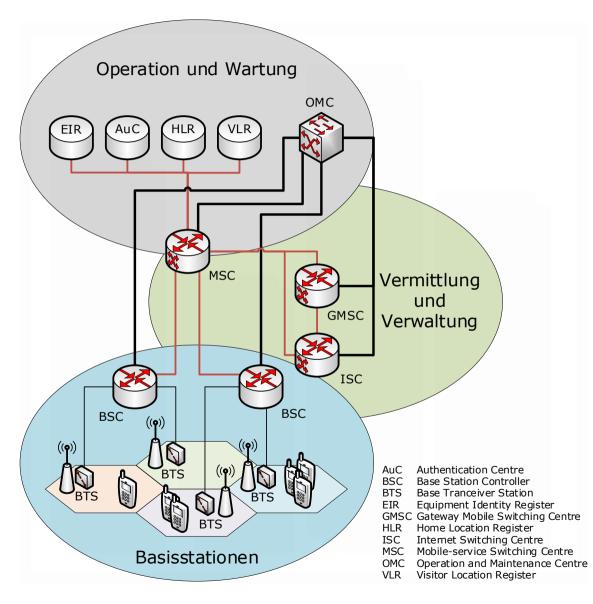
- Aufteilung des Frequenzbandes in Teilfrequenzen
- Nachbarzellen nutzen unterschiedliche Teilfrequenzen
 - → Vermeidung von Interferenzen
- entstehendes Zellcluster wird wiederholt
 - je größer die Zelle, desto weniger Kanäle pro Fläche verfügbar
 - je größer die Zelle, desto größer sind benötigte Sendeleistung und Interferenzzone

$$D=R\sqrt{3k}$$

- k: Anzahl Zelltypen (hier k=7)
- D: Abstand zwischen 2 Basisstationen


mit gleicher Frequenz

Einführung


MULTIPLEXVERFAHREN

- Multiplexverfahren ermöglichen mehrere Kanäle an einem Ort
- Frequency Division Multiple Access (FDMA)
 - → Nutzung von Teilbändern für mehrere Kanäle
- Time Division Multiple Access (TDMA)
 - → Nutzung von Zeiträumen (time slots) für mehrere Kanäle
- Code Division Multiple Access (CDMA)
 - → Nutzung minimal interferierender Kodes für mehrere Kanäle

MOBILFUNKNETZE

- zellbasierte Struktur auf nationaler Ebene
- hierarchische
 Netzwerkarchitektur
- Behandlung von Mobilität (Übergabe bei Zellwechsel)
- Anbindung an PSTN, andere Mobilfunknetze und das Internet
- getrennte Pfade für verbindungs- und paketbasierte Kommunikation (Circuit vs. Packet Switched Traffic)

MOBILFUNKNETZE (2G)

- Global System for Mobile Communications (GSM)
 - entwickelt für analog-digital-gewandelte Telefonie
 - Sendeleistung 1W bis 2W
 - Circuit Switched Data (CSD) mit fehlerkorrigierter Datenrate bis $9.600\frac{\text{Bit}}{\text{S}}$ (heute maximal $14.400\frac{\text{Bit}}{\text{S}}$ mit anderer Kodierung)
 - eingeteilt in Traffic Channel (TCH)
- High Speed Circuit Switched Data (HSCSD)
 - leitungsvermittelt; zeitbasierte Abrechnung von Daten
 - parallele Nutzung von bis zu 4 TCH (d.h. maximale Datenrate bei $4 \times 14.400 \frac{\text{Bit}}{\text{S}} = 57.600 \frac{\text{Bit}}{\text{S}}$)
 - asymmetrische Kanalnutzung für schnelleren Upload (2:2 oder 3:1 mit $28.800\frac{Bit}{s}$ Down/Up bzw. $43.200\frac{Bit}{s}$ Down und $14.400\frac{Bit}{s}$ Up)

- General Packet Radio Services (GPRS)
 - Erweiterung von GSM; Netzwerkinfrastrukturanpassung notwendig
 - paketvermittelt; volumenbasierte Abrechnung von Daten
 - Daten parallel zu, aber getrennt von CSD-Diensten
 - parallele Nutzung von bis zu 4 TCH (CS-2-Kodierung) (maximale Datenrate $4 \times 13.400 \frac{\text{Bit}}{\text{S}} = 53.600 \frac{\text{Bit}}{\text{S}}$)
- Enhanced Data Rates for GSM Evolution (EDGE)
 - Anpassung an HSCSD und GPRS durch modifizierte Modulation
 - Nutzung von 6 TCH (4:2 Down/Up) (d.h. maximale Down-Datenrate bei $4 \times 59.200 \frac{\text{Bit}}{\text{S}} = 236.800 \frac{\text{Bit}}{\text{S}}$)
 - EDGE-Modulation kann selektiv pro Kanal aktiviert werden
 - → keine Beeinflussung des übrigen GPRS-Verkehrs

MOBILFUNKNETZE (3G)

- Universal Mobile Telecommunications System (UMTS)
 - basiert auf Breitband-Kodetrennungsmehrfachzugriff (WCDMA)

Drahtlose Kommunikation Kommunikationsgeråte Zusammenfassung

- Nutzertrennung durch Kodierung (CDMA)
- Vollduplexkommunikation durch Frequenzteilung (FDD)
- Anbietertrennung durch Frequenztrennungsmehrfachzugriff (FDMA) oder Zeitschlitzverfahren (TDD)
- Sendeleistung 0,125W bis 0,25W
- paketvermittelte Basisdatenrate bei $384\frac{\text{kBit}}{\text{S}}$ (unter allen Teilnehmerendgeräten geteilt; maximal $2\frac{\text{MBit}}{\text{S}}$)
- leitungsvermittelte Basisdatenrate bei 14,4 KBit S
 (als Leitungsgarantie pro Teilnehmer, falls verfügbar)
- High Interactive Media (leitungsvermittelt) bei 128 kBit (als Leitungsgarantie pro Teilnehmer, falls verfügbar)

MOBILFUNKNETZE (3.5G)

Einführung

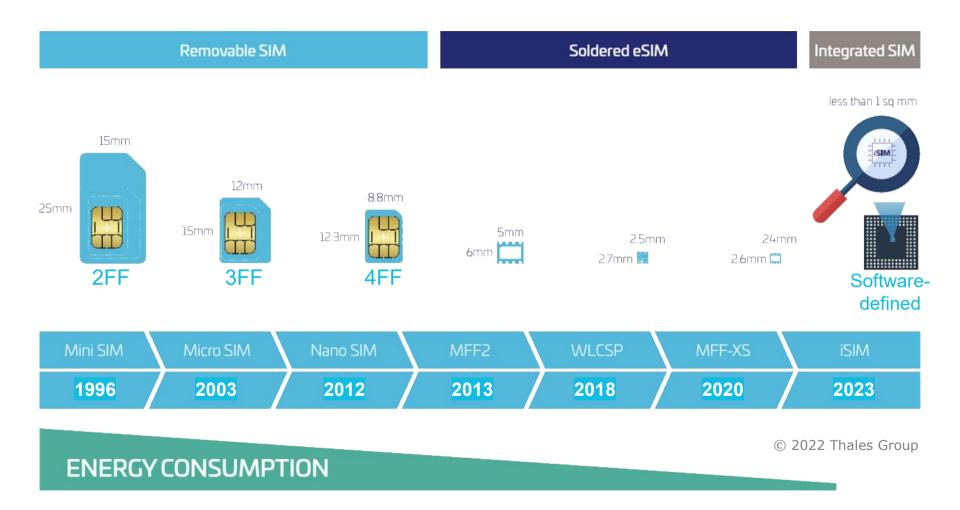
- High-Speed Packet Access (HSPA)
 - Optimierungen für Download- und Upload-Datenraten
 - High-Speed Downlink Packet Access (HSDPA)
 - High-Speed Uplink Packet Access (HSUPA)
 - Mehrantennenkodierung (MIMO) mit Quadraturphasenumtastung (QPSK) und Quadraturamplitudentastung (QAM)

Drahtiose Kommunikation Kommunikationsgeråte Zusammenfassung

- Anbietertrennung durch Frequenztrennungsmehrfachzugriff (FDMA) oder Zeitschlitzverfahren (TDD)
- paketvermittelte Basisdatenraten von $1,2\frac{\text{MBit}}{\text{S}}$ (Kategorie 1) bis 337,5 $\frac{\text{MBit}}{\text{S}}$ (Kategorie 36) je Endgerät
- Datenraten in der Praxis: $3,6\frac{\text{MBit}}{\text{S}}$, $7,2\frac{\text{MBit}}{\text{S}}$ und $14,4\frac{\text{MBit}}{\text{S}}$ (kanalgebündelt)
- Verluste durch bedarfsgesteuerten, fehlerkorrigierenden Kode

MOBILFUNKNETZE (3.9G)

- Long-Term Evolution (LTE)
 - Orthogonales Frequenzmultiplexing (ODFM) auf Basis von UMTS
 - keine Änderung an der UMTS-Basisstationshardware notwendig!
 Nur angepasste Modulation und Kodierung
 - paketvermittelte Basisdatenrate von 50 MBit s
 - · asymmetrische Kanalbündelung
 - Cat 4 (3:1): $150\frac{\text{MBit}}{\text{S}}$ Down und $50\frac{\text{MBit}}{\text{S}}$ Up
 - Cat 6 (6:1): $300 \frac{\text{MBit}}{\text{S}}$ Down und $50 \frac{\text{MBit}}{\text{S}}$ Up
 - unterstützt mobile Endgeräte (bis $500\frac{\text{km}}{\text{h}}$; optimiert auf $15\frac{\text{km}}{\text{h}}$)

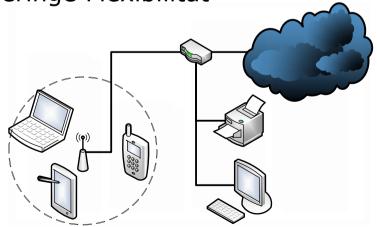

MOBILFUNKNETZE (4G, 5G)

- LTE-Advanced (LTE+, LTE-A)
 - höhere spektrale Effizienz von bis $30 \frac{\text{Bit}}{\text{s.Hz}}$
 - höhere Anzahl gleichzeitig aktiver Nutzer
 - MIMO-Zugang auch am Zellrand → höhere Randdatenraten
 - Trägerbündelung (Carrier Aggregation; CA) in Kombination mit erhöhter Multi-Antennentechnik (8x8 MIMO Down)

Drahtlose Kommunikation Kommunikationsgeräte

- Down-Datenraten von 300 MBit s bis 4 GBit s
- Up-Datenraten von $50\frac{\text{MBit}}{\text{S}}$ bis $1\frac{\text{GBit}}{\text{S}}$
- Down/Up in der Praxis (Deutschland, 2018): $600\frac{\text{MBit}}{\text{S}}$ / $150\frac{\text{MBit}}{\text{S}}$
- 5. Mobilfunkgeneration (5G NR, 5GTF, 5G-SIG)
 - geringere Latenz, höhere Datenraten
 - Nahbereich- bis Fernkommunikation

MOBILFUNKZUGANG

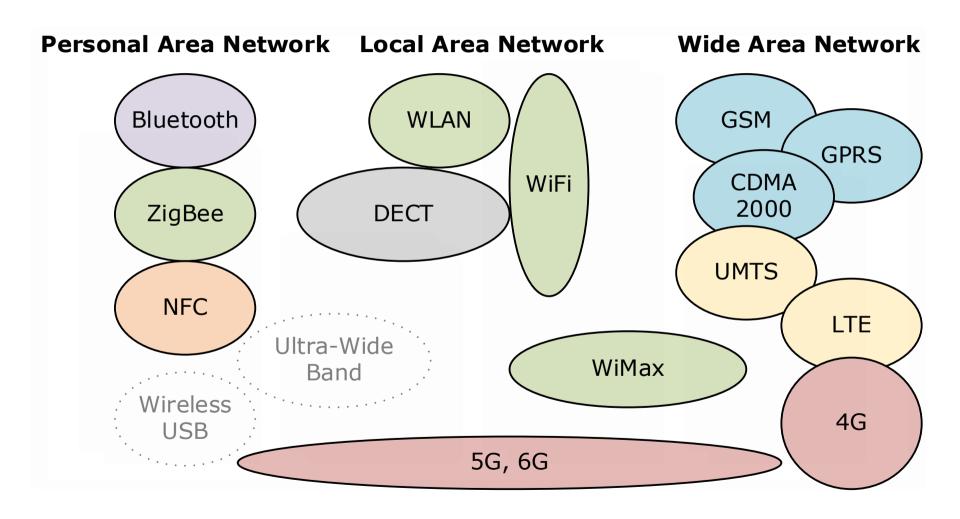


WLAN UND WPAN

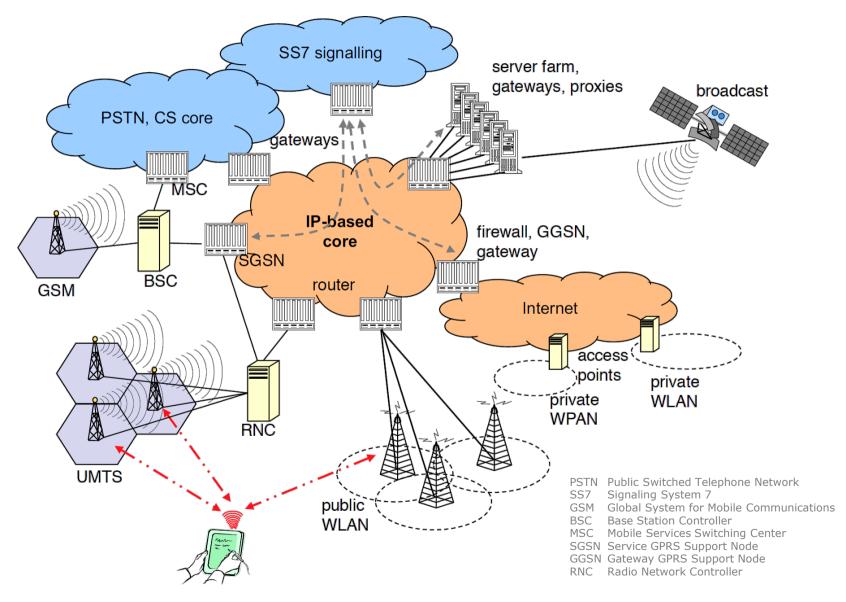
Einführung

Wireless Local Area Network

- drahtloser Zugang zum LAN via Access Point (AP)
- via LAN Zugriff auf weitere Netze
- Stern-Topologie
- Netzwerkfunktionalität durch AP vorgegeben
- stationäre Planung notwendig; geringe Flexibilität


Wireless Personal Area Network

- persönliches P2P-Netzwerk
- ohne Zentralstation/Hierarchie
- ohne vorherige Planung möglich (ad hoc)
- gesamte Netzwerkfunktionalität muss in Geräten vorgehalten werden → komplexere Endgeräte
- nur prokurierter Zugriff auf andere Netzwerke



DRAHTLOSE KOMMUNIKATIONSTECHNOLOGIEN

INTEGRIERTE KOMMUNIKATIONSINFRASTRUKTUR

Einführung Drahtlose Kommunikationsge

Informationsdarstellende Geräte

Basisgeräte

- Sprache und SMS
- simples Zubehör
 - Kamera
 - Taschenlampe

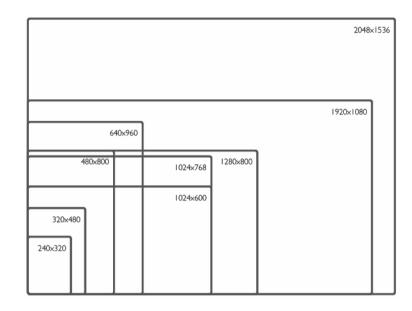
- Sprache, Nachrichten, Daten
- WLAN
- grafische Nutzeroberfläche
- Touch-Bedienung
- kleine Tastatur oder Bildschirmtastatur
- Apps und App-Store

Tablets

- Daten (WLAN, 3G, 4G)
- grafische Nutzeroberfläche
- Touch-Bedienung
- Apps und App-Store

Netbook/Laptop

- voller Funktionsumfang
- Standardanwendungen



- Sprache, SMS/MMS, Daten
- Kamera mit Einstellungen
- JavaME, BREW

RESSOURCEN

- Samsung Galaxy Tab S8 Ultra
 - bis zu 512GB / 16GB Speicher
 - Snapdragon 8 Gen 1 (1x Cortex-X2, 3x Cortex-A710, 4x Cortex-A510), dediz. GPU (Adreno 730)
 - 2960x1848 px bei 240ppi
 - WiFi, GPS, 3G+, LTE, 5G, BT
- Google Pixel 6 Pro
 - bis zu 512GB / 12GB Speicher
 - Tensor (2x Cortex-X1, 2x Cortex-A76, 4x Cortex-A55), dediz. GPU (Mali-G78 MP20)
 - 1440x3120 px bei 512ppi
 - WiFi, Dual-Band GPS, 3G+, LTE,
 5G, UWB, NFC, BT

- BLU Studio X10 2022
 - 32GB / 1GB Speicher
 - Mediatek MT6580 (4x Cortex-A7)
 - 480x854 px bei 196ppi
 - WiFi, GPS, 3G+, BT, FM-Radio

BILDSCHIRMAUFLÖSUNGEN

Deutschland

Auflösung Anteil

1. 1080x1920 17.89%

2. 750x1334 17.09%

3. 1440x2960 12.40%

4. 720×1280 11.56%

5. 1440x2560 9.71%

USA

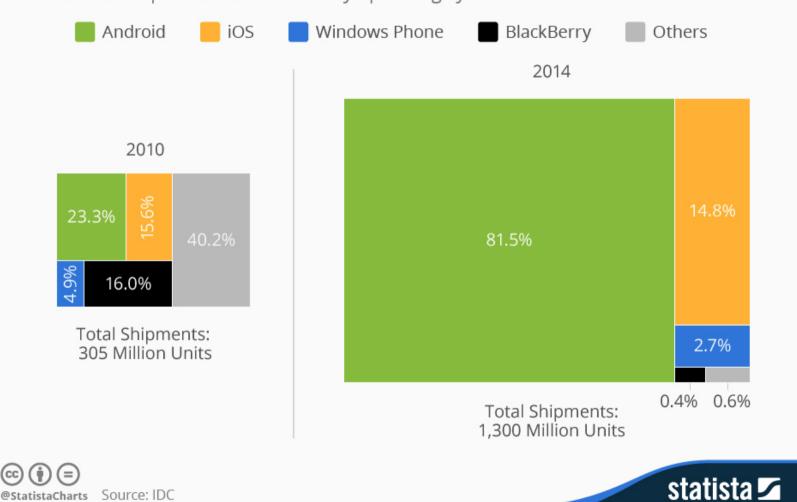
Apple

Auflösung Anteil 750x1334 21.45% 1. 1080x1920 2. 20.36% 1440x2960 15.70% 3. 1125x2436 8.81% 4. 5. 720x1280 7.22%

Zahlen für Q4/2019

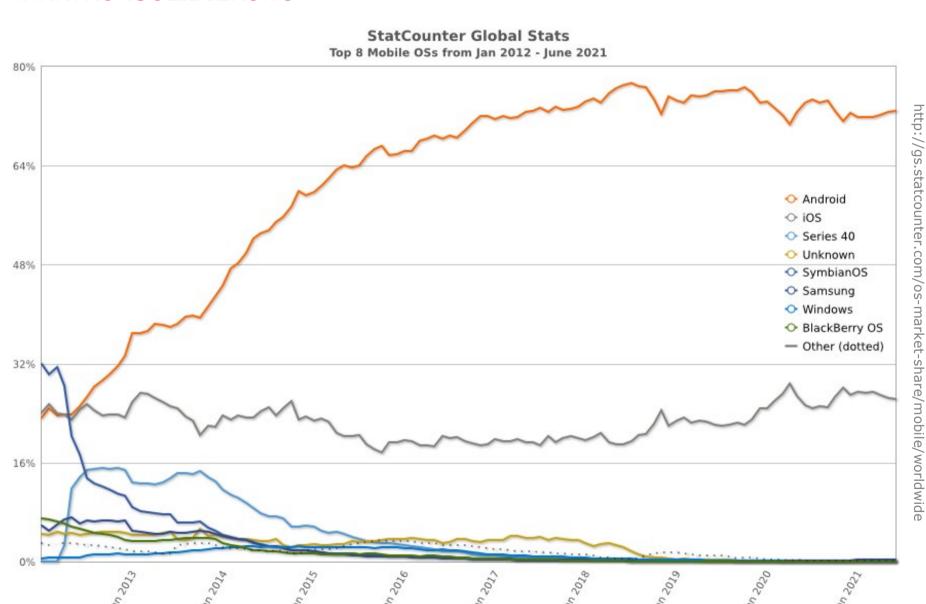
https://deviceatlas.com/blog/most-used-smartphone-screen-resolutions

Samsung



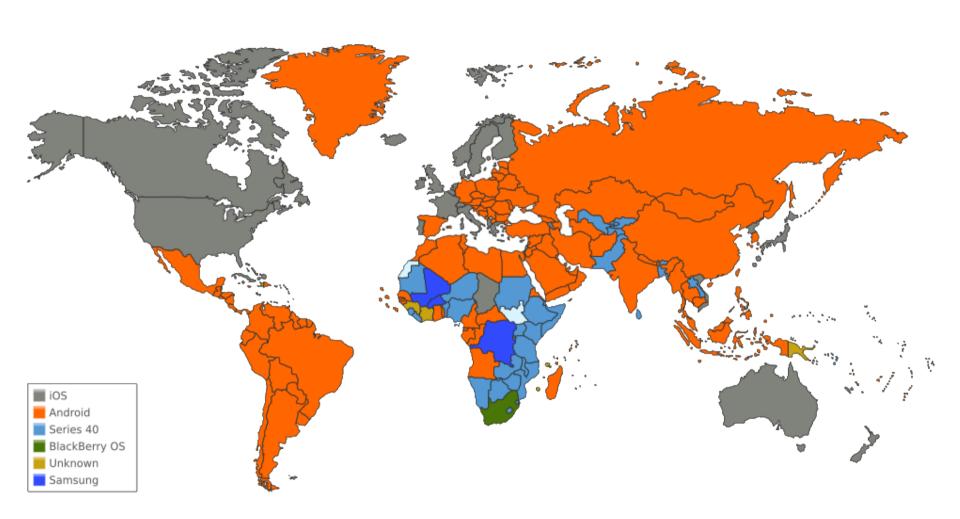
BETRIEBSSYSTEME

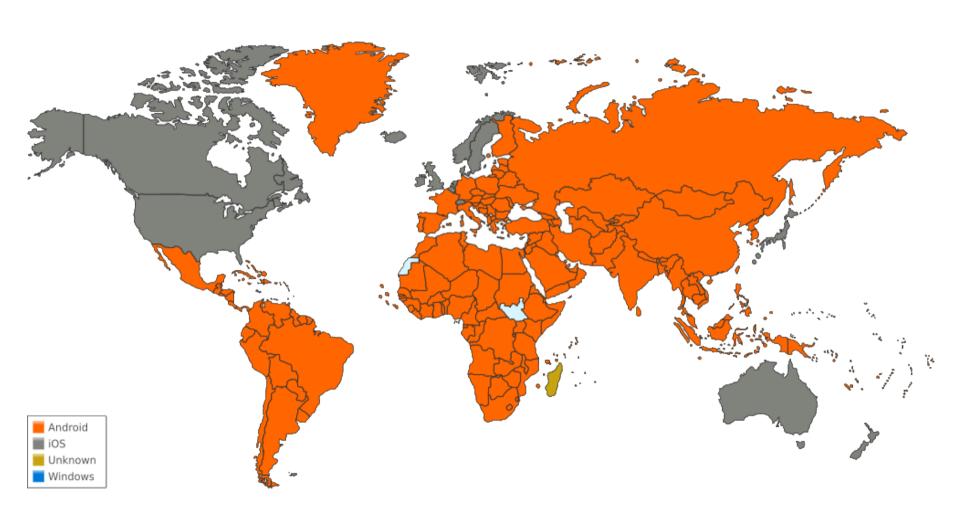
- Android
 - · für Smartphones, Tablets, Wearables und Embedded
 - Java-Entwicklungsumgebung, aber spezielle Runtime (ART, Dalvik)
 - herstellerübergreifend (HTC, Huawei, LG, Motorola, Samsung, Sony, ...), aber teilweise sehr stark angepasst
- iOS
 - für Smartphone, Tablets und Mediengeräte
 - Entwicklungsumgebung in Swift und Objective-C, XCode
 - exklusiv auf Apple-Geräten
- Sonstige
 - Blackberry
 - Firefox OS, Chrome OS
 - Sailfish
 - Samsung Tizen
 - Symbian, S40, S60
 - Windows Phone


Smartphone Duopoly Pushes Competition To The Fringes

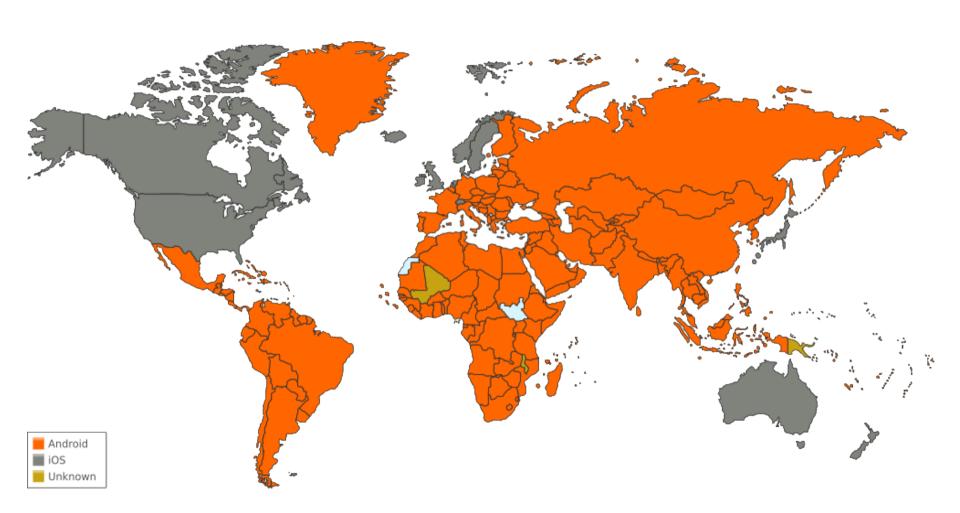
Worldwide smartphone market share by operating system

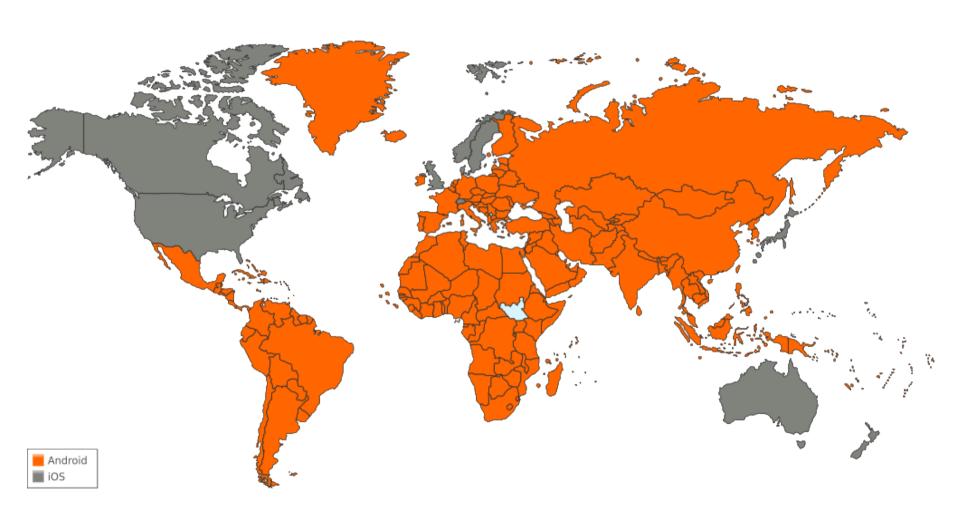
http://www.statista.com/chart/3464/mobile-browsing-market-share/

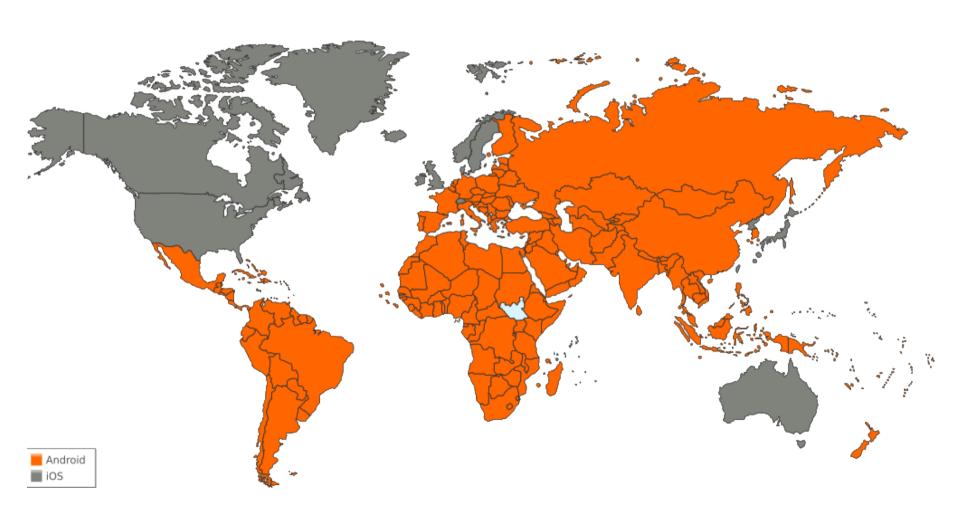

MARKTKONSOLIDIERUNG

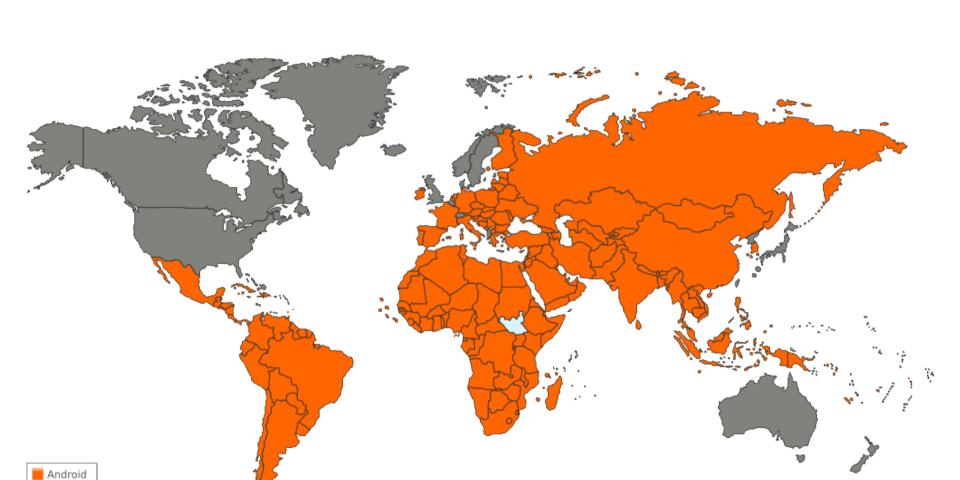

MARKTKONSOLIDIERUNG

StatCounter Global Stats




http://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201310-201312-map


http://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201510-201512-map


http://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201710-201712-map

https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-201910-201912-map

https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-202110-202112-map

https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-202210-202212-map

ios

HERAUSFORDERUNGEN IM FORMFAKTOR

Heterogenität in

- begrenzten Ressourcen
 - Energie(verbrauch), Speicher(verbrauch), Prozessorgeschwindigkeit
 - verfügbare Peripheriegeräte (insbesondere Sensoren)
- Ein-/Ausgabegeräten
 - Eingabe: Tastatur, Ziffernblock, Stift, Sprache, ...
 - Ausgabe: Bildschirmgröße, Auflösung, Farbraum, GUI-Vorgaben, ...
- Software(abstraktion)
 - Betriebssystem
 - Geräteplattform
 - Browser und unterstützte Medienformate

ENERGIE(VERBRAUCH)

Einführung

- entkoppelte Energiequellen ermöglichen Mobilität
 - → Energievorrat ist aber *begrenzt*!
- Hauptenergieverbraucher:
 - Bildschirm, insbesondere beleuchtete
 - Kommunikation, insbesondere WLAN
 - Berechnungen, insbesondere CPU- und Speicher-lastige
- ⇒ Energiebewusstsein ist Schlüssel zur mobilen App

INTERAKTIONSMÖGLICHKEITEN

- Berührungen (Touch)
- Stift
- Pfeiltasten
- Maus
- Trackball
- Trackpoint
- Bildschirmtastatur
- physische, vollwertige Tastatur
- physische, eingeschränkte Tastatur
- Nummernblock
- Buchstabenerkennung

MULTIMODALE EINGABEN

Multimodalität

- parallele, sequentielle oder alternierende Nutzung verschiedener Modalitäten (optisch, akustisch, haptisch)
- natürlichere Interaktionen
 zwischen Mensch und Computer
 → HCI
- Einsatz kann an Aufgaben angepasst und optimiert werden
- hängt von Umgebung ab
 - verfügbare Modalitäten
 - Geräuschpegel
 - Helligkeit
 - Nutzeraktivität

Konnektivitätsherausforderung

Drahtlose Kommunikation

Netzzugangsmethoden

Einführung

- sind heterogen (Technologien, Frequenzen, Bandbreiten, Verzögerungen, Jitter, Fehlerraten, Kosten, ...)
- haben begrenzte Abdeckung
- können nur zeitabhängig verfügbar sein
- sind für unterschiedliche Anwendungsfälle gemacht
 - GSM: mobile Sprachkommunikation
 - UMTS: mobile Sprachkommunikation und mobiler Datenaustausch
 - LTE: mobiler Datenaustausch
 - IEEE 802.11: drahtloser Zugang zum LAN
 - Bluetooth: drahtlose Anbindung von Peripheriegeräten
- systemische Probleme ggü. drahtgebundener Kommunikation
 - mehr Interferenzen und höhere Fehleranfälligkeit
 - begrenzte Bandbreite und Abdeckung
 - Sicherheit

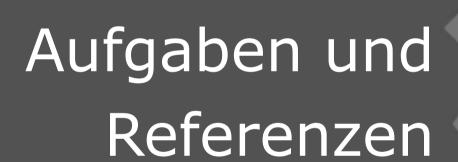
OFFLINE-PHASEN-HERAUSFORDERUNG

- unterschiedliche Gründe für Phasen der Netztrennung
 - vorhersehbare

Einführung

- Energieeinsparung
- Kommunikationskosten
- Lokalität
- unvorhersehbare
 - nicht abgedeckte Regionen
 - Serverausfall
 - Netzwerküberfüllung
- Daten- und Dienstverfügbarkeit
 - Funktionalität soll unterbrechungsfrei weiter gegeben sein (transparente Netztrennung)
 - Nachverfolgung von Datenerstellung und -änderung
 - Synchronisierung mit Backend und Konfliktbeseitigung

Zusammenfassung


USABILITY-HERAUSFORDERUNG

spezieller Formfaktor mobiler Geräte

Drahtlose Kommunikation

- hoch dynamische Umgebung
 - Applikationsmobilität von Nutzern und Geräten
 - Änderung von Geräten und Verbindungen während der Laufzeit
 - sequentielle und parallele Nutzung unterschiedlicher Ein- und Ausgabegeräte
- heterogene Nutzeranforderungen → Personalisierung
- heterogene Nutzungsszenarien
 - unterschiedliche Aufgaben und Rollen
 - veränderliche Lokation und Lokalität
- variable Ein- und Ausgabemodalitäten
- neue Formen der Interaktion

AUFGABEN

- Diskutieren Sie mit Ihren Kommilitonen die Herausforderungen mobiler Applikationen.
 - Was kann man als Entwickler beeinflussen?
 - Was kann man als Entwickler beim Entwurf minimieren?
- Diskutieren Sie mit Ihren Kommilitonen, was mehr Energie verbraucht:
 Mobilfunk oder WLAN. Begründen Sie umfangreich!
- Diskutieren Sie mit Ihren Kommilitonen die Herausforderungen drahtloser Netzwerktechnologien, insbesondere der Mobilfunknetze.
- Diskutieren Sie mit Ihren Kommilitonen multimodale Eingabestrategien. Wie/Wann würden Sie die unterschiedlichen Strategien einsetzen?

REFERENZEN

George H. Forman, John Zahorjan: The Challenges of Mobile Computing. IEEE Computer, Volume 27, Issue 4, April 1994

M. Satyanarayanan: Pervasive Computing: Vision and Challenges. IEEE Personal Communications, Volume: 8, Issue: 4, 2001

Weiser, M., Brown, J. S.: The Coming Age of Calm Technology. Revised version of: Weiser & Brown. "Designing Calm Technology", PowerGrid Journal, v 1.01, http://powergrid.electriciti.com/1.01 (July 1996)

Friedemann Mattern: State of the Art and Future Trends in Distributed Systems and Ubiquitous Computing.

http://www.vs.inf.ethz.ch/publ/papers/DisSysUbiCompReport.html